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Abstract. The approximation of a short-time evolution operator for a molecular system with
the HamiltonianH0 + V is constructed in terms of the evolution operator of an unperturbed
system, a perturbative potentialV and commutators ofH0 andV . A description of a powerful
method for such a construction based on the Lie-algebra technique is given. It is demonstrated
that efficient representation for the evolution operator can be obtained using approximations like
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whereS = − it3

48h̄3 [[H0, V ], V ]. This relation is accurate up to the third order in time. The
simplest approximations of this type are listed.

1. Introduction

Describing the evolution of a molecular system is one of the central problems of quantum
chemistry which has been studied very actively in recent years. It is examined in an
enormous number of papers within very different contexts, such as unimolecular reaction
dynamics, the theory of an elementary event of chemical reaction, the analysis of vibrational
energy dissipation in the condensed phase etc. Without any claim to a comprehensive
review we would like to mention that references [1–9] were the most helpful when creating
this paper. Treating the evolution problem usually implies that the full Hamiltonian of a
molecular system can be represented as a sum of the HamiltonianH0 and some perturbation
term V . In our paperH0 and V are assumed to be time independent and the evolution
operator of the unperturbed system is known. We recall the fact that sinceH0 andV are
the non-commuting operators, the evolution operator of the full system is not equal to the
product of theH0 andV propagators. As a rule, the perturbation term is some potential and
any function ofV can be calculated easily. Hence, one usually needs to express the evolution
operator of a system as the combination of the evolution operator for the unperturbed system
and some functions ofV . Using the notationX = −iH0t/h̄, Y = −iV t/h̄, we come to
the problem of evaluating the operator exp(X + Y ) in terms of exp(X), exp(Y ), Y , and, if
necessary, suitable combinations of these operators such as [X, Y ] = XY − YX etc. The
natural approach to the problem is as follows

exp(X + Y ) = exp(X) exp(Y ) exp(S) (1.1)

whereS is the correction operator to be found with a certain degree of accuracy. Further,
for the sake of brevity we refer to any kind of approximation for the operator exp(X + Y )
§ Author to whom correspondence should be addressed. E-mail address: vip@moleq.chem.msu.su
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as the EA (the exponent approximation). Relations of the type (1.1) are well known in Lie-
algebra theory, where explicit expressions forS may be derived in terms of the commutator
series. These expressions are of the most interest for us in this paper. There are several
types of approximation for exp(S):

(A) One can search for an expansion ofS as a linear combination of Lie elementsSk
of different degreek = 1, 2, . . . , i.e. expressions of the form [. . . [[X, Y ], X], . . . , Y ] that
are(k − 1)-order commutators, wherek denotes the number of the symbolsX andY :

S = S1+ S2+ S3+ · · · . (1.2)

(B) By analogy with Zassenhaus’ method [10, 11] one can search the Lie elements of
degreek −=k or <k for k = 1, 2, 3 . . . , determining both the left-hand and right-hand side
expansions for exp(S) as

exp(S) = exp(<1) exp(<2) exp(<3) . . . (1.3)

exp(S) = . . .exp(=3) exp(=2) exp(=1). (1.4)

(C) Following Kumar’s approach [12], one can be interested in the terms that are linear
in Y , quadratic inY etc. This approach is equivalent to perturbation theory [11]. We confine
ourselves only to the terms that are linear inX or in Y .

There are at least two reasons that motivate the study of these approximations. First,
as follows from the definition ofX and Y , any Lie element of degreek corresponds to
the t k-like time dependence. This makes it interesting to consider a finite number of Lie
elements with smallk for the description of short-time evolution. Secondly, in general the
molecular HamiltonianH0 has the form

H0 =
∑
a

(
p2
a

2ma
+ Ua

)
(1.5)

wherema are the effective masses;Ua are the potentials that depend on the variables
q1, q2, . . . , qN ; pa = −ih̄∂a (∂a symbol denotes the derivative with respect toqa, ∂ab = ∂a∂b
etc). In this case all Lie elements may be calculated directly using the commutation relation
[qa, pb] = ih̄δa,b. For example, one obtains forV andH0

[V,H0] =
∑
a

ih̄

2ma
(pa∂aV + ∂aVpa) (1.6)

[[V,H0], H0] =
∑
ab

h̄2

4mamb
{4mb∂aUb∂aV − h̄2∂aabbV − 2(papb∂abV + ∂abVpapb)} (1.7)

[[V,H0], V ] =
∑
a

h̄2

ma
(∂aV )

2. (1.8)

Sometimes, for instance when treating the dynamics of a weakly-coupled molecular
complex, it is reasonable to assume that the potentialV is not only small enough
(in some sense) but also smooth enough to consider∂aV as the terms of the smaller
order of magnitude. In other words it should be advantageous to take into account
only the commutators of the lowest orders at least after a relatively short time of
evolution. Unfortunately, as follows from (1.6) and (1.7) the calculation of exp([X, Y ])
and exp([[X, Y ], X]) and the calculation of exp(X + Y ) itself do not differ in the effort
required, unless the potentialV is not a linear function of all the variables. On the contrary,
computing the values of expressions like exp([[X, Y ], Y ]) is trivial for anyV by virtue of
(1.8). Thus, in the present work we develop a method of the EAs construction, treating only
the lowest orders ofSk and paying special attention to the minimization of the numerical
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coefficients at the terms of the sort (1.6), (1.7). We derive the general EA expression in the
form

exp(X + Y ) ≈ exp(apX) exp(bpY ) . . .exp(a1X) exp(b1Y ) (1.9)

whereai, bi are rational numbers and the correction term is presented as exp(S) (like (1.1))
in terms of the Lie elements in accordance with representations (1.2)–(1.4).

The structure of this paper is as follows. Section 2 presents a brief review of the algebraic
assertions needed later in section 3 for the construction of the Lie elementsSk,=k,<k for
small k in the EAs of the sort (1.9). The approach used is a variant of the Magnus–Dynkin
technique [10, 13]. Section 4 gives an analysis of the EA (1.1) as an illustration. The
general problem (1.9) is considered in section 5, where some compact and effective EAs
are derived and section 6 contains remarks on the use of the EAs for long-time evolution
operator calculations in the spirit of the famous Lie–Trotter formulae.

To avoid any possible misunderstanding we would like to highlight that all power series
or products like (1.2)–(1.4) are considered from the pure formal algebraic point of view
and all problems connected with the radii of convergence, operator norms and domains are
omitted. (An analysis of this range of problems is presented, for example, by Kumar [12].)
We focus our attention on the algebraic structure of the expressions in use.

2. Algebraic tools

This section lists the principal definitions, formulae and statements from Lie-algebra theory
employed in our further constructions. All the details and modern terminology may be
found, e.g. in [14, 15]. All the operations are performed on the complex numerical field,
symbolsa, b, c, d are used for complex numbers.

Let us considerX andY to be the non-commuting symbols generating a free associative
algebra of polynomialsℵ = ℵ(X, Y ), i.e. a set of formal linear combinations of monomials

χ = x1x2 . . . xm (2.1)

wherexi = X or Y with customary multiplication defined. The degreem of the monomial
(2.1) is denoted as degχ . Functions onℵ are considered as the formal power series.

It is also possible to construct a Lie algebra on generatorsX and Y with the
anticommutative operation [·, ·] as multiplication. Then a Lie elementσ(χ) is an analogue
for the monomialχ :

σ(χ) = [. . . [[x1, x2], x3], . . . , xm] (2.2)

whereσ(X) = X, σ(Y ) = Y, σ (constant) = 0. The non-zero Lie elementsσ(χ) and their
formal linear combinations form a subspaceL in ℵ. The homogeneous Lie polynomials
with degreem > 0 generate a linear subspaceLm in L. We considerσ to be a symbol of
linear mappingσ : ℵ → L defined according to (2.2) for the monomials (2.1) and continued
linearly to function fromℵ ontoL. For example

σ(Y exp(X)) =
∞∑
k=0

σ(YXk)

k!
= Y + [Y,X] + 1

2[[Y,X], X] + · · · (2.3)

σ(Y (1+ aX) exp(aX)) =
∞∑
k=0

σ(YXk)ak(k + 1)

k!
. (2.4)

The following key statements [10, 13–15] are used further for any elementu ∈ Ln (we
supposen > 0).
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The Dynkin–Specht theorem.

σ(u) = nu. (2.5)

The Wever lemma.For anyχ ∈ ℵ
σ(u2χ) = 0. (2.6)

It is critical that the degree ofu is defined. Relation (2.6) is not valid for unspecifiedu ∈ L.

Corollary. If u ∈ Ln, v ∈ Ln for arbitraryn and anyχ ∈ ℵ then

σ(uvχ) = −σ(vuχ). (2.7)

The last three statements follow from an important property ofσ -mapping [15]: for
v ∈ L, χ ∈ ℵ

σ(χv) = [σ(χ), v]. (2.8)

This can be proved easily forv ∈ Lm by induction onm. Due to (2.6) for any numbera,
anyχ ∈ ℵ andu ∈ Ln, it is evident that the following relations arise forσ :

σ(exp(au)) = aσ(u) (2.9a)

σ(exp(au)χ) = σ(χ)+ aσ(uχ) (2.9b)

σ(u exp(au)χ) = σ(uχ). (2.9c)

Relation (2.5) demonstrates thatσ maps fromLn into Ln and is reversible onLn. AsL is a
direct sum of subsetsLn(n > 0), the contraction ofσ onL is also reversible. For example,

if u ∈ L andσ(u) = 0 thenu = 0. (2.10)

Together withσ , another linear mappingπ : ℵ → L may be introduced by the following
relations:

π(constant) = 0 π(χ) = σ(χ)

degχ
(2.11)

for χ of the form (2.1) and continued linearly to function fromℵ ontoL. It is obvious (see
(2.5)) thatπ is an identical operation onL. The main properties of this mapping are the
following. First, by virtue of (2.9a),

for u ∈ Lm π(exp(u)) = u. (2.12)

Secondly, one can easily see that

π(YXn) = σ(YXn)

n+ 1
= [. . . [[Y,X], X], . . . , X]

n+ 1
(2.13a)

π(Y exp(X)) =
∞∑
k=0

σ(YXk)

(k + 1)!
(2.13b)

π(Y (1+ aX) exp(aX)) =
∞∑
k=0

ak

k!
σ(YXk) = σ(Y exp(aX)). (2.13c)

This mapping is of interest to our goals for the following reason. As demonstrated later,
the properties (2.9) ofσ allow us to estimate the valueσ(S) for unknownS ∈ L for some
chosen EA. Then one may recover the value ofS by applying the following lemma.

Lemma 1.If S ∈ L, χ ∈ ℵ then it follows fromσ(S) = σ(χ) that

S = π(χ). (2.14)
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Proof. Let T = π(χ). By virtue of (2.5), (2.11) for the monomials (2.1) withm > 0 and
hence for anyχ ∈ ℵ

σ(π(χ)) = σ(χ). (2.15)

That is why

σ(S − T ) = σ(S)− σ(T ) = σ(S)− σ(π(χ)) = σ(S)− σ(χ) = 0

and the assertion follows from (2.10). �

The method of Magnus [10] and Dynkin [13] employed in the present paper for EA
construction is based on this lemma and the properties of theσ andπ functions listed earlier.
The principal point in applying lemma 1 is to demonstrate the fact that the values of function
S = S(X, Y ) lie in L. For a simple check it is convenient to utilize the Friedrichs’ criterion
[10, 15].

Let S(X, Y ) be an element ofℵ(X, Y ). Let us introduce two additional generatorsX′,
Y ′, supposing [X, Y ] 6= 0, [X′, Y ′] 6= 0, [X,X′] = [X, Y ′] = [Y,X′] = [Y, Y ′] = 0. Then
we construct a free associative algebra of polynomialsℵ̃(X, Y,X′, Y ′) and define an element
S(X +X′, Y + Y ′) ∈ ℵ̃ that has the same particular form as the functionS(X, Y ).

Friedrichs’ criterion. The elementS(X, Y ) belongs toL if and only if

S(X +X′, Y + Y ′) = S(X, Y )+ S(X′, Y ′). (2.16)

Applying Friedrichs’ criterion is straightforward. For instance, setS(X, Y ) =
ln(exp(X) exp(Y )), then

S(X +X′, Y + Y ′) = ln(exp(X +X′) exp(Y + Y ′))
= ln(exp(X) exp(Y ) exp(X′) exp(Y ′)) = ln(exp(S(X, Y ))expS(X′, Y ′))
= S(X, Y )+ S(X′, Y ′).

We have used only the properties of the formal power series for the exponent and logarithm
for commuting values. Hence

exp(X) exp(Y ) = exp(S) (2.17)

whereS ∈ L. HereS is represented by the well known Baker–Campbell–Hausdorff (BCH)
formula [10, 13, 15, 16]:

S = X + Y + 1
2[X, Y ] + 1

12([[X, Y ], Y ] + [[Y,X], X])+ · · · . (2.18)

We present one other example: according to Friedrichs’ criterion exp(−X)Y exp(X) is a
Lie element. On the other hand, owing to (2.7), (2.9b)

σ(exp(−X)Y exp(X)) = σ(Y exp(X))− σ(XY exp(X)) = σ(Y (1+X) exp(X)).

In accordance with lemma 1 and (2.13c), we come to another well known BCH formula:

exp(−X)Y exp(X) = π(Y (1+X) exp(X)) = Y + [Y,X] + 1
2[[Y,X], X] + · · · .
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3. The Magnus–Dynkin technique

Within the scope of our approach to the problem of the EA one may obtain correction terms
in the form exp(S), whereS is a Lie element. Thus, due to the properties ofσ the problem
of S-determination is reduced to the equation

σ(exp(S)) = σ(q) (3.1)

whereq is an element ofℵ, calculated with the help of relations (2.9). Applying lemma 1
it is possible to estimateS in the manner described in points (A), (B) and (C) of the
introduction.

From now on we label with a bottom indexk the degree of the componentSk and
with the indicesx or y the terms which are linear inX or Y , respectively. The operations
(·)k, (·)x,y are mutually interchangeable and are also interchangeable withσ andπ for the
elements of the form (2.1) and thus for all elements ofℵ.

To construct the type A and B EAs it is practical to use the following.

Lemma 2.The solution of equation (3.1) may be expressed in terms of approximations
(1.2)–(1.4) as

S1 = =1 = <1 = π(q1) S2 = =2 = <2 = π(q2)

S3 = (<3+ =3)/2

<3 = π(q3− π(q1)π(q2)) =3 = π(q3− π(q2)π(q1)).

(3.2)

For k > 3, the relevant expressions for=k,<k have the same form as the following one for
Sk:

Sk = π(Sk) = π(qk − ηk) (3.3)

whereηk is some combination ofSj for j < k.

Proof. In accordance with (2.15) one can reduce problem (3.1) to the system of equations

σ(π(exp(S)))k = σ(π(q))k (3.4)

which leads (by applying lemma 1) to the system:

π(exp(S))k = π(q)k. (3.5)

For an EA correction of the type (1.2)

(exp(S))k =
(

1+ S + 1

2
S2+ · · · + 1

k!
Sk
)
k

(3.6)

since we only need to take into account terms of degree less than or equal tok. Several
components from the right-hand side of (3.6) vanish owing to the Wever lemma (2.6). For
instance fork > 1(

π

(
1

k!
Sk
))

k

= π
(

1

k!
Sk1

)
= 0.

As a result (3.5) is transformed into (3.3). Realization of this technique proposed by Magnus
[10] leads to (3.2). �

Studying the terms ofS which are linear inX or in Y is difficult enough in the general
case, but may be simplified significantly with the help of several additional restrictions.
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Lemma 3.Let (Sx)1 = 0. Then for equation (3.1)

Sy = π(qy). (3.7)

Proof. As if (Sx)1 = 0, we setS = Sy + S̃, where S̃ should contain the terms that are
higher than linear inY . In this case

(exp(S))y = (1+ S + 1
2S

2+ . . .)y = (1+ S)y = Sy
asSk has a degree greater or equal tok with respect toY . Further conclusions are the same
as in the proof of (3.3). One should mention that the Wever lemma is not valid here.

Note that a trivial modification of the proof of lemma 3 demonstrates that((exp(S))x)1 =
(Sx)1 = (qx)1 and hence lemma 3 can be applied to solve (3.1) if(qx)1 = 0.

In general it is rather difficult to calculateqi in order to apply lemma 2 to solve (3.1).
The essence of our technique is to employ lemma 3 for the construction ofSx andSy . In
both cases it is possible to utilize standard algebraic tools to computeπ(q) in theY -linear
(or X-linear) approximation. As mentioned in the introduction, the corrections of small
degree are of the most interest for practical goals. Generally, we use only those EAs that
coincide with the exact expressions in the limitt → 0. It means that in all those EAsS1 = 0
and by virtue of lemma 2<3 = =3 = S3 for the case at hand. Under this assumption the
S-terms with degreek 6 3 are

S2+ S3 = c2[X, Y ] + c3[[X, Y ], Y ] + d3[[Y,X], X]. (3.8)

It is clear thatc2 and c3 may be found as the coefficients at(Sx)2 and (Sx)3, while c2, d3

as the coefficients at(Sy)2, (Sy)3 similarly. Hence, it is sufficient to evaluate onlySx and
Sy and to apply (3.2), (3.7) to settle problem (3.1) for approximations (A), (B) and (C) of
several lowest orders. �

4. Examples of exponent approximation

Let us consider, for instance, a simple approximation of the form:

exp(X + Y ) ≈ exp(X) exp(Y ). (4.1)

There are several EAs of this type, obtained by rearranging the cofactors:

exp(X + Y ) = exp(X) exp(Y ) exp(S) (4.2)

exp(X + Y ) = exp(X) exp(S) exp(Y ) (4.3)

exp(X + Y ) = exp(S) exp(X) exp(Y ) (4.4)

together with those resulting fromX, Y permutation. For all these six cases the functionS

differ. The method described in section 3 allows us to findS for any one of the problems
(4.2)–(4.4) by means of trivial algebraic manipulations.

Let us examine (4.2) as an example. In this case

exp(S) = exp(−Y ) exp(−X) exp(X + Y ). (4.5)

As follows from Friedrichs’ criterion,S is a Lie element. Applying (2.9) one obtains for
σ(exp(S)):

σ(exp(S)) = σ(exp(−X) exp(X + Y ))− σ(Y exp(−X) exp(X + Y ))
= σ(exp(X + Y ))− σ(X exp(X + Y ))− σ(Y exp(−X) exp(X + Y ))
= (X + Y )− σ((X + Y ) exp(X + Y ))+ σ(Y (1− exp(−X)) exp(X + Y ))
= σ(Y (1− exp(−X)) exp(X + Y )). (4.6)
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Since 1− exp(−X) = X + · · · , exp(S) does not contain anS1-type component. It is also
clear that

(σ (exp(S))y = σ(Y (1− exp(−X)) exp(X)) = σ(Y (exp(X)− 1)). (4.7)

By virtue of (2.13b), (3.7) and (4.7)

Sy = π(Y (exp(X)− 1)) =
∞∑
k=1

σ(YXk)

(k + 1)!
(4.8)

and similarly

Sx = −π(XY exp(Y )) = −
∞∑
k=1

σ(XY k)

(k + 1)!
k. (4.9)

Hence, it is obvious that in (4.2)

c2 = − 1
2 c3 = − 1

3 d3 = 1
6

and we come to the relation

exp(X + Y ) = exp(X) exp(Y ) exp(− 1
2[X, Y ] − 1

3[[X, Y ], Y ] + 1
6[[Y,X], X] + . . .) (4.10)

which may be compared to (2.17), (2.18). Different relations of this kind may be found
in the literature [11, 12, 16] and many of them may be obtained by means of elementary
tools especially in the case when some additional assumptions aboutX, Y and [X, Y ] are
implied. In contrast our approach does not need any additional assumption of that sort. The
simplest relations, that were found useful for practical goals (see e.g. [8] where the problem
of molecular evolution was studied within the frameworks of adiabatic approximation), are
presented in tables 1 and 2.

Table 1 contains the values of the symbolsSx, Sy and ck, dk coefficients for the EAs
(4.2)–(4.4). Table 2 contains the values ofSk,=k,<k for the simplest formulae of the kind

exp(X + Y ) = exp(X) exp(S). (4.11)

Table 1. The linear components of the correction operator and the weights of the lowest-order
commutators for different representations of exp(X + Y ).

Exponent c2 c3 d3

approximation SX-component SY -component [X, Y ] [[X, Y ], Y ] [[Y,X], X]

eXeXeS π(−XYeY ) π(Y (eX − 1)) − 1
2 − 1

3
1
6

eY eXeS π(X(eY − 1)) π(−YXeX) 1
2

1
6 − 1

3

eXeSeY π(X(e−Y − 1)) π(Y (eX − 1)) − 1
2

1
6

1
6

eY eSeX π(X(eY − 1)) π(Y (e−X − 1)) 1
2

1
6

1
6

eSeXeY π(X(e−Y − 1)) π(YXe−X) − 1
2

1
6 − 1

3

eSeY eX π(XYe−Y ) π(Y (e−X − 1)) 1
2 − 1

3
1
6

eX/2eY eX/2eS π(X/2((1− Y )eY − 1)) π(Y (eX − (1+X/2)eX/2)) 0 − 1
12

1
24

eX/2eY eSeX/2 π(X/2((1− Y )eY − 1)) π(Y (eX/2/2+ e−X/2/2− 1)) 0 − 1
12

1
24

eX/2eSeY eX/2 π(X/2((1+ Y )e−Y − 1)) π(Y (eX/2/2+ e−X/2/2− 1)) 0 − 1
12

1
24

eSeX/2eY eX/2 π(X/2((1+ Y )e−Y − 1)) π(Y (e−X − (1−X/2)e−X/2)) 0 − 1
12

1
24

eY/2eXeY/2eS π(X(eY − (1+ Y/2)eY/2)) π(Y/2((1−X)eX − 1)) 0 1
24 − 1

12
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Table 2. The lowest components for the simplest approximations of the types A, B and C.

S1 = =1 = <1 S2 = =2 = <2 S3 =3 <3
Exponent
approximationXY [X, Y ] [[X, Y ], Y ] [[Y,X], X] [[X, Y ], Y ] [[Y,X], X] [[X, Y ], Y ] [[Y,X], X]

eXeS 0 1 − 1
2 − 1

12
1
6

1
6

1
6 − 1

3
1
6

eSeX 0 1 1
2 − 1

12
1
6 − 1

3
1
6

1
6

1
6

eX/2eSeX/2 0 1 0 − 1
12

1
24 − 1

12
1

24 − 1
12

1
24

In this latter case one readily finds that

Sy = π(Y exp(X)) =
∞∑
k=0

σ(YXk)

(k + 1)!
. (4.12)

This relationship may also be obtained in a more standard form [11, 12]. It is easy to prove
this by the induction of a trivial assertion:

Lemma 4.For the eigenvector|0〉 of the operatorX with the eigenvaluex0

σ(YXn)|0>= (x0−X)nY |0〉. (4.13)

In theY -linear approximation this means that

exp(X + Y )|0〉 = exp(X) exp(S)|0〉 = exp(X)(1+ Sy)|0〉

= exp(X)

(
1+

∞∑
k=0

(x0−X)n
(k + 1)!

Y

)
|0〉. (4.14)

For the spectral projectorQ corresponding to the eigenvaluex0, P = 1−Q, relation (4.14)
transforms to (note that the operator(x0−X)−1P should be defined correctly)

exp(X + Y )|0〉 ≈ exp(x0)(1+QY + (x0−X)−1P(1− exp(X − x0)Y ))|0〉. (4.15)

This formula is standard for first-order perturbation theory.

5. The exponential approximations of a general case

Let us treat the EA which may be written as the following expansion with a finite number
of cofactors:

exp(X + Y ) = exp(apX) exp(bpY ) . . .exp(a1X) exp(b1Y ) exp(S) (5.1)

whereai, bi are the numerical coefficients. Let us denote

α0 = β0 = 0 αj =
j∑
i=1

ai βj =
j∑
i=1

bi. (5.2)

Then the relationS1 = 0 means

αp = βp = 1. (5.3)

Theorem 1.For an EA of the type (5.1) with conditions (5.3)

Sy =
∞∑
k=0

σ(YXk)

k!

(
1

k + 1
−

p∑
j=1

bjα
k
j−1

)
Sx =

∞∑
k=0

σ(XY k)

k!

(
1

k + 1
−

p∑
j=1

ajβ
k
j

)
.

(5.4)
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Proof. It is evident that

exp(S) = exp(−b1Y ) exp(−a1X) . . .exp(−bpY ) exp(−apX) exp(X + Y )
andS satisfies Friedrichs’ criterion. The use of an approximation, linear with respect toY ,
under assumption (5.3), yields

(exp(S))y = (exp(−X) exp(X + Y ))y −
p∑
j=1

bj exp(−αj−1X)Y exp(αj−1X).

According to lemma 3 and due to the properties (2.9) of theσ - mapping (in just the same
manner as that used for (4.6)) we obtain

Sy = π(Y exp(X)−
p∑
j=1

bj exp(−αj−1X)Y exp(αj−1X)) = π(YFp(X)) (5.5)

where

Fp(X) = exp(X)−
p∑
j=1

bj (1+ αj−1X) exp(αj−1X).

With the help of (2.13b), (2.13c) we find (5.4). The value ofSx is calculated analogously.�

Note that, as it in fact must be, the second-order components ofSx andSy are equal in
magnitude by virtue of (5.3).

As mentioned in the introduction, the EA which has zero coefficients for terms of the
type [YXk] represents the most interest for practical purposes. This requirement leads to a
system of equations (see(5.4)) for someM:

p∑
j=1

bjα
k
j−1 =

1

k + 1
k = 0, 1, 2, . . . ,M. (5.6)

Relations of this type are known as the moment problem which has a unique solution
in the positive area (this follows [17] from the positive definity of the matrix with elements

Aij =
(

1
i+j+1

)
). For instance, forp = 2,M = 2 problem (5.6) has an explicit solution that

leads to the following EAs:

exp(X + Y ) ≈ exp

(
X

3

)
exp

(
3

4
Y

)
exp

(
2

3
X

)
exp

(
Y

4

)
exp(S) (5.7a)

exp(X + Y ) ≈ exp

(
Y

4

)
exp

(
2

3
X

)
exp

(
3

4
Y

)
exp

(
X

3

)
exp(S) (5.7b)

whereS = − 1
48[[X, Y ], Y ]. For both EAs (5.7) the difference between the right-hand side

and the left-hand side contains terms of the fourth and higher degree, i.e. (5.7) is accurate
up to the third order. The replacement of the exp(S) cofactor in the spirit of (4.2)–(4.4)
gives different expressions forS but does not change the lowest-order correction component
in accordance with the following.

Theorem 2.Let us consider two EAs:

exp(X + Y ) = exp(A) exp(B) exp(S)

exp(X + Y ) = exp(A) exp(S̃) exp(B)

for some Lie elementsA,B. The lowest-order non-zero Lie components ofS and S̃ have
the same value.
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Proof. In accordance with the definition ofS we have

exp(S̃) = exp(−A) exp(X + Y ) exp(−B) = exp(B) exp(S) exp(−B).
Due to (2.19) this means that

exp(S̃) = exp(S)+ [B, exp(S)] + 1
2[[exp(S), B], B] + · · ·

and now it is sufficient to modify the proof of lemma 3 to demonstrate that the lowest-degree
non-zero Lie components of exp(S̃) and exp(S) are the same.

Note that ifS = Sn+Sn+1+· · · andB1 is not equal to zero, theñSn+1 = Sn+1+ [B1, Sn]
and similar estimations may be found for the higher orders. �

With the help of our formulae it is possible to find different EAs of a particular specified
form. Here one should note that for the case under study (see (1.8))σ(XY k) = 0 when
k > 2. Hence, to provide the simultaneous vanishing of the coefficients at the termsσ(XYm)

andσ(YXm) we need to resolve together with (5.6) only the following relation:
p∑
j=1

ajβ
2
j = 1

3. (5.8)

As relation (5.3) shows, the problem is insoluble forp = 2,M = 2. Forp = 3 it is easy
to expressb2, b3 as functions ofα1 andα2, applying (5.6) forM = 2. The substitution of
these results in (5.8) leads to an equation forα1 andα2:

α2
13(4α2− 3)− α1α23(4α2− 3)+ (3α2− 2)2 = 0 (5.9)

and it is not difficult to demonstrate the absence of any real-valued solutions in positive
numbersai, bi . We have noticed that among others the continuum of solutions with some
negativeai, bi exists for this equation. We present only one here as an example

exp(X + Y ) ≈ exp

(
7

24
X

)
exp

(
13

51
Y

)
exp

(
−X

24

)
exp

(
−2

3
Y

)
exp

(
3

4
X

)
exp

(
24

17
Y

)
(5.10)

which has the same accuracy as (5.7). A similar EA constructed by Bandrauk and Shen [18]
has seven cofactors and irrational coefficients—the latter include negative ones. However,
the use of evolution operator expansions with variable time direction seems to be strange
enough and inconvenient in practice. In our opinion EA (5.7) is optimal.

In practice one may use largep values and, in any case, equations (5.6), (5.8) allow
us to exclude commutators of the sortσ(XYm) or σ(YXm). Delivering from terms such as
σ(XYXY) needs much more effort and we doubt whether this effort is reasonable.

6. Concluding remarks

Applying the EAs considered earlier for numerical modelling of a real molecular system
we find they have some rather unpleasant properties. While for relatively short timest the
evolution operatorU(t) does not differ significantly from an approximated oneW(t) and
the difference may be estimated as

‖U(t)−W(t)‖ 6 Cmtm (6.1)

whereCm is some constant andm is the lowest non-zero order in(U(t))−1W(t), at relatively
long evolution times this difference may grow significantly. Whereas we usually consider
the Hermitean Hamiltonians, the evolution operatorsU(t),W(t) are unitary in our technique,
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thus they differ in norm by no more than 2, but this is too rough for practical calculation.
The way out may be found in employing the formulae which are very popular for larget

in semigroup theory and for numerical approaches to the problems of molecular dynamics
i.e. the EAs based on the Lie–Trotter formulae [19, 20]

exp(X + Y ) = lim
n→∞

(
exp

(
X

n

)
exp

(
Y

n

))n
(6.2)

as well as its symmetrized analogue [19, 21, 22]

exp(X + Y ) = lim
n→∞

(
exp

(
X

2n

)
exp

(
Y

n

)
exp

(
X

2n

))n
. (6.3)

([20] presents a complete analysis of the evolution operator for the case of very small
evolution times.)

Taking into account thatU(t) = (U(t/n))n and applying (6.1) one may see after ordinary
transformations that [19]

‖U(t)− (W(t/n))n‖ = ‖(U(t/n))n − (W(t/n))n‖

= ‖
n−1∑
k=0

(U(t/n))n−k−1(U(t/n)−W(t/n))(W(t/n))k‖

6 n‖U(t/n)−W(t/n)‖ 6 nCm(t/n)m. (6.4)

As a result

U(t) = lim
n→∞(W(t/n))

n. (6.5)

Let us consider as an illustration relations of the type (5.1) setting all the exponents
aj = bj = 1/p (this is a case of Trotter expansion (6.2)). ThenSy = π(YFp), where
(see (5.5))

Fp(X) = exp(X)−
p∑
j=1

1

p

(
1+ j − 1

p
X

)
exp

(
j − 1

p
X

)
. (6.6)

The sum on the right-hand side of this expression is a Darbou sum for the integral∫ 1

0
(1+ zx) exp(zx) dz = exp(x)

and the tendency ofFp to vanish asp→∞ illustrates relations (6.2) and (6.3). (For (6.3)
the Darbou sum is replaced with the trapezoidal formula.) The efficiency of the high-order
formulae like (6.2) and (6.3) is demonstrated by a large number of numerical experiments
[5–8, 18, 21, 22].

As follows from (6.4), the growth oft in calculations with a given accuracy level for
‖U(t)− (W(t/n))n‖ leads to the non-linear growth ofn. For smallm the time-step(t/n)
decreases considerably whilet increases, e.g. fort growth 100 times form = 2 (the case of
Trotter’s EA, (6.2)), the time-step should be decreased 100 times for given accuracy. For
the case corresponding to (6.3)(m = 3), the time-step should be decreased 10 times, and
for our favourite EA corresponding to (5.7) withm = 4—only 2.2 times. The calculation
efforts increase only twice here compared with (6.2).

In conclusion we would like to mention again that the constructions described here are
effective for a finite time of evolution. Unfortunately, the technique derived here is not
potent enough for a direct description of asymptotict →∞. An analysis of the formulae
from tables 1 and 2 demonstrates that in relations like (4.15) the terms responsible for the
delta-form tendency are corrected by some non-singular functions whent →∞. Roughly
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speaking, the singular term in (4.15) is ‘omitted’ in EAs of the type (5.1) with a finite-degree
correction as an approximation forS. Nevertheless, the method described seems to be at
least attractive for the analysis of theS-matrix in the scattering theory.
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