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Algebraic method for the evolution operator approximation

T Yu Mikhailovar and V | Pupysheig

1 N S Kurnakov Institute of General and Inorganic Chemistry, 117907, Moscow, Russia
1 Department of Chemistry, Moscow State University, 119899, Moscow, Russia

Received 23 July 1997, in final form 5 February 1998

Abstract. The approximation of a short-time evolution operator for a molecular system with
the HamiltonianHp + V is constructed in terms of the evolution operator of an unperturbed
system, a perturbative potentiel and commutators ofip and V. A description of a powerful
method for such a construction based on the Lie-algebra technique is given. It is demonstrated
that efficient representation for the evolution operator can be obtained using approximations like

exp (—;:(Ho + V)t) :exp<—3ih—_Hot> exp(—%V:) exp(—%Hm) exp(—zlih—_\/t> exp(s)

where § = f%[[Ho, V], V]. This relation is accurate up to the third order in time. The
simplest approximations of this type are listed.

1. Introduction

Describing the evolution of a molecular system is one of the central problems of quantum
chemistry which has been studied very actively in recent years. It is examined in an
enormous number of papers within very different contexts, such as unimolecular reaction
dynamics, the theory of an elementary event of chemical reaction, the analysis of vibrational
energy dissipation in the condensed phase etc. Without any claim to a comprehensive
review we would like to mention that references [1-9] were the most helpful when creating
this paper. Treating the evolution problem usually implies that the full Hamiltonian of a
molecular system can be represented as a sum of the HamiltBigiand some perturbation

term V. In our paperHp and V are assumed to be time independent and the evolution
operator of the unperturbed system is known. We recall the fact that glp@nd V are

the non-commuting operators, the evolution operator of the full system is not equal to the
product of theHy andV propagators. As a rule, the perturbation term is some potential and
any function ofV can be calculated easily. Hence, one usually needs to express the evolution
operator of a system as the combination of the evolution operator for the unperturbed system
and some functions o¥. Using the notationX = —iHpt/h, Y = —iVt/h, we come to

the problem of evaluating the operator €Xp+ Y) in terms of expX), exp(Y), Y, and, if
necessary, suitable combinations of these operators sucki,ay £ XY — Y X etc. The
natural approach to the problem is as follows

exp(X 4+ Y) = exp(X) exp(Y) exp(S) (1.1)

where S is the correction operator to be found with a certain degree of accuracy. Further,
for the sake of brevity we refer to any kind of approximation for the operato(XxpY)
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as the EA (the exponent approximation). Relations of the type (1.1) are well known in Lie-
algebra theory, where explicit expressions $omay be derived in terms of the commutator
series. These expressions are of the most interest for us in this paper. There are several
types of approximation for exfs):

(A) One can search for an expansion®fs a linear combination of Lie elemenis

of different degreek = 1, 2, ..., i.e. expressions of the form.[.[[X, Y], X], ..., Y] that
are (k — 1)-order commutators, wheredenotes the number of the symbd{sandY:
S=814+8+83+---. (1.2)

(B) By analogy with Zassenhaus’ method [10, 11] one can search the Lie elements of
degreek — J; or Ny for k =1, 2, 3. .., determining both the left-hand and right-hand side
expansions for exi$) as

exp(S) = exp(f1) exp(fo) exp(Ra) ... (1.3)
exp(s) = ...exp(J3) exp(Iz) expiS). (1.4)

(C) Following Kumar’s approach [12], one can be interested in the terms that are linear
in Y, quadratic inY etc. This approach is equivalent to perturbation theory [11]. We confine
ourselves only to the terms that are linearXiror in Y.

There are at least two reasons that motivate the study of these approximations. First,
as follows from the definition off and Y, any Lie element of degrek corresponds to
the t*-like time dependence. This makes it interesting to consider a finite number of Lie
elements with smalt for the description of short-time evolution. Secondly, in general the
molecular HamiltonianHy has the form

2
Pa
Ho= Z (E + Ua> (1.5)
wherem, are the effective massedj, are the potentials that depend on the variables
41,42, - - - qn; Pa = —ihd, (3, symbol denotes the derivative with respect{0d,, = 9,9,

etc). In this case all Lie elements may be calculated directly using the commutation relation
(94> P»] = RS, . For example, one obtains féf and Hy

[V, Ho) = Z 2'mia(mav + 34V pa) (1.6)
72
[V, Hol, Hol = ) {4m10,Up0aV = B30V = 2(papbdanV + 0aVpaps)} (L.7)
b M, My,
%
[V, Hal, V1= ——(8.V)* (1.8)
a a

Sometimes, for instance when treating the dynamics of a weakly-coupled molecular
complex, it is reasonable to assume that the poteritials not only small enough
(in some sense) but also smooth enough to consigér as the terms of the smaller
order of magnitude. In other words it should be advantageous to take into account
only the commutators of the lowest orders at least after a relatively short time of
evolution. Unfortunately, as follows from (1.6) and (1.7) the calculation of([g&pY])
and exg[[ X, Y], X]) and the calculation of eXX + Y) itself do not differ in the effort
required, unless the potentitlis not a linear function of all the variables. On the contrary,
computing the values of expressions like €kjg, Y], Y]) is trivial for any V by virtue of
(1.8). Thus, in the present work we develop a method of the EAs construction, treating only
the lowest orders of; and paying special attention to the minimization of the numerical
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coefficients at the terms of the sort (1.6), (1.7). We derive the general EA expression in the
form

expX +Y) ~ expla,X) expb,Y) ...exparX) exp(b.rY) (1.9)

wherea;, b; are rational numbers and the correction term is presented &S)eflige (1.1))
in terms of the Lie elements in accordance with representations (1.2)—(1.4).

The structure of this paper is as follows. Section 2 presents a brief review of the algebraic
assertions needed later in section 3 for the construction of the Lie eleieatg, N, for
smallk in the EAs of the sort (1.9). The approach used is a variant of the Magnus—Dynkin
technique [10,13]. Section 4 gives an analysis of the EA (1.1) as an illustration. The
general problem (1.9) is considered in section 5, where some compact and effective EAs
are derived and section 6 contains remarks on the use of the EAs for long-time evolution
operator calculations in the spirit of the famous Lie—Trotter formulae.

To avoid any possible misunderstanding we would like to highlight that all power series
or products like (1.2)—(1.4) are considered from the pure formal algebraic point of view
and all problems connected with the radii of convergence, operator norms and domains are
omitted. (An analysis of this range of problems is presented, for example, by Kumar [12].)
We focus our attention on the algebraic structure of the expressions in use.

2. Algebraic tools

This section lists the principal definitions, formulae and statements from Lie-algebra theory
employed in our further constructions. All the details and modern terminology may be
found, e.g. in [14, 15]. All the operations are performed on the complex numerical field,
symbolsa, b, ¢, d are used for complex numbers.

Let us consideX andY to be the non-commuting symbols generating a free associative
algebra of polynomial® = R(X, Y), i.e. a set of formal linear combinations of monomials

X = X1X2...Xp (2.1)

wherex; = X or Y with customary multiplication defined. The degreeof the monomial
(2.1) is denoted as deg Functions ok are considered as the formal power series.

It is also possible to construct a Lie algebra on generatorand Y with the
anticommutative operation,[] as multiplication. Then a Lie element(y) is an analogue
for the monomialy:

o(x) =[..[lx1, x2], x3], ..., xu] (2.2)

whereo (X) = X,0(Y) = Y, o(constant = 0. The non-zero Lie elements(x) and their
formal linear combinations form a subspatein &. The homogeneous Lie polynomials
with degreem > 0 generate a linear subspatg in L. We considew to be a symbol of
linear mapping: 8 — L defined according to (2.2) for the monomials (2.1) and continued
linearly to function from® onto L. For example

o k
o (Y exp(X)) =y G(ZX ) _v+ [Y, X] + 3[[Y. X]. X] + - -- (2.3)
k=0 )

X o (YXMakk + 1)
o (Y(1+aX)expaX)) = ; . )

The following key statements [10, 13-15] are used further for any elemenk,, (we
suppose: > 0).

(2.4)
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The Dynkin—Specht theorem.
o(u) = nu. (2.5)

The Wever lemma.For anyy € R
ow?y) = 0. (2.6)
It is critical that the degree of is defined. Relation (2.6) is not valid for unspecified L.

Corollary. If u e L,,v € L, for arbitraryn and anyy € X then
o(uvy) = —o(vuy). 2.7)

The last three statements follow from an important property ehapping [15]: for
vel,xeR

o(xv) =[o(x), v]. (2.8)

This can be proved easily far € L,, by induction onm. Due to (2.6) for any number,
any x € X andu € L,, it is evident that the following relations arise for

o(explaun)) = ao (u) (2.9%)
o(explau)x) = o(x) +ao(uy) (2.%)
owexplau)y) = o(uy). (2.9)

Relation (2.5) demonstrates thatmaps fromL,, into L, and is reversible o.,,. As L is a
direct sum of subsets, (n > 0), the contraction o& on L is also reversible. For example,

if u e L ando(u) =0 thenu = 0. (2.10)
Together witho, another linear mapping : & — L may be introduced by the following
relations:
_ o

degy

for x of the form (2.1) and continued linearly to function fratnonto L. It is obvious (see
(2.5)) thatr is an identical operation ohA. The main properties of this mapping are the
following. First, by virtue of (29a),

foru e L, m(expu)) = u. (2.12)
Secondly, one can easily see that

oYX [...[[Y.X], X],..., X]

m(constant=0 7 (x) (2.12)

T(YX") = e ] (2.13)
o (Yxh
(Y expX)) = ; P (2.1%)
o k
7(Y(1+aX)expaX) = ak—la(YXk) = o (Y expaX)). (2.1%)
k=0 "

This mapping is of interest to our goals for the following reason. As demonstrated later,
the properties (2.9) of allow us to estimate the value(S) for unknownsS € L for some
chosen EA. Then one may recover the valuesdfy applying the following lemma.

Lemma 1.If S € L, x € ¥ then it follows fromo (S) = o (x) that
S =m(y). (2.14)
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Proof. Let T = 7 (x). By virtue of (2.5), (2.11) for the monomials (2.1) with > 0 and
hence for anyy € R

o(m(x) =0 (x). (2.15)
That is why
o(§—=T)=0(S)—a(l)=0(S) —o@(x) =0(S) —0(x)=0
and the assertion follows from (2.10). O
The method of Magnus [10] and Dynkin [13] employed in the present paper for EA
construction is based on this lemma and the properties of tredr functions listed earlier.
The principal point in applying lemma 1 is to demonstrate the fact that the values of function
S =S8(X,Y) liein L. For a simple check it is convenient to utilize the Friedrichs’ criterion
[10,15].
Let S(X, Y) be an element oR(X, Y). Let us introduce two additional generatofs
Y’, supposing X, Y] # 0, [X", Y] #0, [X,X'] = [X, Y] =[V,X'] =[Y,Y] = 0. Then

we construct a free associative algebra of polynomials, ¥, X', Y’) and define an element
S(X + X', Y +7Y’) € ¥ that has the same particular form as the functfigix, Y).

Friedrichs’ criterion. The elementS(X, Y) belongs toL if and only if

SX+X,Y+Y)=S(X,Y)+SX,Y). (2.16)

Applying Friedrichs’ criterion is straightforward. For instance, s&tX,Y) =
In(exp(X) exp(Y)), then

S(X+X,Y +Y) =In(expX + X)expY +Y'))
= In(exp(X) exp(Y) exp(X") exp(Y")) = In(exp(S(X, Y)) expS(X’, Y"))
=S8X,Y)+SX, Y.

We have used only the properties of the formal power series for the exponent and logarithm
for commuting values. Hence

exp(X) exp(Y) = exp(S) (2.17)

whereS € L. HereS is represented by the well known Baker—Campbell-Hausdorff (BCH)
formula [10, 13, 15, 16]:

S=X+Y+3X, Y]+ X, Y], Y]+ Y. X, XD +---. (2.18)

We present one other example: according to Friedrichs’ criteriori-eXpY exp(X) is a
Lie element. On the other hand, owing to (2.7).9

oexp(—X)Y exp(X)) = o (Y exp(X)) — o (XY exp(X)) = o (Y (1+ X) exp(X)).
In accordance with lemma 1 and.{2c), we come to another well known BCH formula:

exp(—X)YexpX) =n(Y(L+ X)expX)) =Y +[Y, X] + %[[Y, X, X]+---.
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3. The Magnus—Dynkin technique

Within the scope of our approach to the problem of the EA one may obtain correction terms
in the form ex@s), whereS is a Lie element. Thus, due to the propertiesrahe problem
of S-determination is reduced to the equation

o (exp(s)) = a(q) 3.1

whereq is an element oR, calculated with the help of relations (2.9). Applying lemma 1
it is possible to estimateS in the manner described in points (A), (B) and (C) of the
introduction.

From now on we label with a bottom index the degree of the componesit and
with the indicesx or y the terms which are linear iX or Y, respectively. The operations
(), (-)x,y are mutually interchangeable and are also interchangeableswaitid 7w for the
elements of the form (2.1) and thus for all elementstof

To construct the type A and B EAs it is practical to use the following.

Lemma 2.The solution of equation (3.1) may be expressed in terms of approximations
(1.2)—(1.4) as

S1=S1=R1=mn(q1) So =T =N =7(q2)
S3= N3+ J3)/2 (32)
N3 = (g3 — m(q1)7(q2)) S3=m(g3 — w(g2)7(q1))-

For k > 3, the relevant expressions g, i, have the same form as the following one for
Sk

Sk = (Sk) = mw(qx — i) (3.3)

wheren, is some combination of; for j < k.

Proof. In accordance with (2.15) one can reduce problem (3.1) to the system of equations

o (7 (exp(8)))k = o ((g))k (3.4)
which leads (by applying lemma 1) to the system:
T (eXPS)k = 7 (q)x- (3.5)
For an EA correction of the type (1.2)
1 1
(exp(S))i = (1+ S+ ES2 ot FS") (3.6)
: k

since we only need to take into account terms of degree less than or equalSeveral
components from the right-hand side of (3.6) vanish owing to the Wever lemma (2.6). For
instance fork > 1

() (2) o

As aresult (3.5) is transformed into (3.3). Realization of this technique proposed by Magnus
[10] leads to (3.2). O

Studying the terms of which are linear inX or in Y is difficult enough in the general
case, but may be simplified significantly with the help of several additional restrictions.
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Lemma 3.Let (S,); = 0. Then for equation (3.1)
Sy = m(gy). 3.7)

Proof. As if (S,)1 = 0, we setS = S, + S, where S should contain the terms that are
higher than linear irt. In this case
exp$), = L+S+1i52+..),=1+5), =S,

asS* has a degree greater or equaktwith respect tar. Further conclusions are the same
as in the proof of (3.3). One should mention that the Wever lemma is not valid here.

Note that a trivial modification of the proof of lemma 3 demonstrates(flexp(S)).); =
(Sy)1 = (g.)1 and hence lemma 3 can be applied to solve (3.1y,if1 = O.

In general it is rather difficult to calculatg in order to apply lemma 2 to solve (3.1).
The essence of our technique is to employ lemma 3 for the constructiSp afd S,. In
both cases it is possible to utilize standard algebraic tools to comyiygtein the Y-linear
(or X-linear) approximation. As mentioned in the introduction, the corrections of small
degree are of the most interest for practical goals. Generally, we use only those EAs that
coincide with the exact expressions in the limit> 0. It means that in all those EA% = 0
and by virtue of lemma 23 = I3 = S3 for the case at hand. Under this assumption the
S-terms with degreé& < 3 are

S+ 83 = CZ[Xv Y] + 03[[X7 Y]! Y] +d3[[Yv X]’ X] (38)

It is clear thatc, andcz may be found as the coefficients @), and (S,)s, while ¢z, ds
as the coefficients &ts, )2, (Sy)s similarly. Hence, it is sufficient to evaluate onfy and
S, and to apply (3.2), (3.7) to settle problem (3.1) for approximations (A), (B) and (C) of
several lowest orders. O

4. Examples of exponent approximation

Let us consider, for instance, a simple approximation of the form:

exp(X 4+ Y) ~ exp(X) exp(Y). (4.2)
There are several EAs of this type, obtained by rearranging the cofactors:

exp(X 4+ Y) = exp(X) exp(Y) exp(S) (4.2)

expX + Y) = exp(X) exp(S) exp(Y) (4.3)

exp(X + Y) = exp(S) exp(X) exp(Y) (4.4)

together with those resulting froik, ¥ permutation. For all these six cases the functfon
differ. The method described in section 3 allows us to fihfbr any one of the problems
(4.2)—-(4.4) by means of trivial algebraic manipulations.

Let us examine (4.2) as an example. In this case

exp(s) = exp(—Y) exp(—X) exp(X + Y). (4.5)
As follows from Friedrichs’ criterion$S is a Lie element. Applying (2.9) one obtains for
o (exp(s)):
ag(exp(s)) =oE@xp(—X)expX +Y)) —o(Y exp(—=X)exp(X + 7))
=oE@XpX +Y)) —oXexpX+7Y)) —o(Y exp(—X)expX +Y))
=X+Y)—o((X+Y)expX+Y) +o(Y(1—exp—X))expX + 7))
=o(Y(l—exp(—X))expX +Y)). (4.6)
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Since 1—exp(—X) = X + - - -, exp(S) does not contain ad;-type component. It is also
clear that

(o (exp(S))y = o (Y (1 —exp(—X)) exp(X)) = o (Y (exp(X) — 1)). 4.7)
By virtue of (213b), (3.7) and (4.7)

X o (YX5)
S, =Y (EexpX)—1)) =Yy ——= (4.8)
’ ,; (k + !
and similarly
x k
Si = —n(XYexp¥) = — Y o (XY, (4.9)

— (k+D

Hence, it is obvious that in (4.2)

NI
Wi

1
Cp = — C3 = — dgzé

and we come to the relation
exp(X +Y) = exp(X) exp(Y) exp(—3[X, Y] — 3[[X, Y], Y1 + £[[Y. X], X] +...) (4.10)

which may be compared to (2.17), (2.18). Different relations of this kind may be found
in the literature [11,12,16] and many of them may be obtained by means of elementary
tools especially in the case when some additional assumptions ahauand [X, Y] are
implied. In contrast our approach does not need any additional assumption of that sort. The
simplest relations, that were found useful for practical goals (see e.g. [8] where the problem
of molecular evolution was studied within the frameworks of adiabatic approximation), are
presented in tables 1 and 2.

Table 1 contains the values of the symb6ls S, and ¢, di coefficients for the EAs
(4.2)—(4.4). Table 2 contains the values$®f 3, N, for the simplest formulae of the kind

exp(X + Y) = exp(X) exp(S). (4.11)

Table 1. The linear components of the correction operator and the weights of the lowest-order
commutators for different representations of €kpt V).

Exponent ¢ c3 ds
approximation Sx-component Sy-component kY] [[(x,r],Y] (Y, X], X]
e¥e’e’ n(—XYeY) (Y (e - 1) -3 -3 i
e'e’e’ m(X (e - 1) n(-YXe¥) : { -1
ee’e’ T(X(€eY - 1) n(Y (e - 1) -1 L L
e'e’eX (X - 1) (Y™ —1) 1 L 1
eSeXel T(XE?Y —1) 7(YXe X) -3 H -4
eSel ef m(Xye™) a(Y(EeX -1) i -4 i
eX/2e¥eX/2e5  m(X/2((1—Y)e¥ — 1) 7Y (X — (14 X/2)eX/?)) 0 -5 %
eX2eeSeX2 p(X/2((1-Y)e' — 1) T(Y(©/2/24+e%/2/2-1)) 0 -5 L
X252 m(X/2((1+V)eY = 1) m(Y(E224+e%2/2-1) 0 -4 &
ee¥2e' X2 p(x/2(1+1)et —1) wEX-@A-X/2e%2)) 0 L 3
ef2eXe 265 m(X(e¥ — (1+Y/2€e"/?) m(Y/2((1— X)eX — 1) 0 & -5
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Table 2. The lowest components for the simplest approximations of the types A, B and C.

S1=1=N1 S2=[2=N> S3 3 Na
Exponent
approximationX ¥ [X.Y] ([x.¥] Y]{[Y. X]. X][[X. Y]. Y][[Y, X], X]{[ X, Y], Y][[ Y. X]. X]
1 1 1 1 1 1 1
e'e’ 01 T2 12 6 6 6 3 6
e'eX 01 2 ~ 15 5 -3 5 s 5
e 01 0 T s T .

In this latter case one readily finds that

X o (YX5)
S, =n(Y exp(X)) = —_— .
v = (Y exp(X)) ;(kﬂ)!
This relationship may also be obtained in a more standard form [11, 12]. It is easy to prove
this by the induction of a trivial assertion:

(4.12)

Lemma 4.For the eigenvectol0) of the operatorX with the eigenvalues

o(YX™M|0 >= (xg — X)"'Y|0). (4.13)
In the Y-linear approximation this means that
expiX + Y)|0) = exp(X) exp(S)|0) = exp(X)(1+ S,)|0)

X n
— exp(X) (1+ Z ()(C12+ 1))' >|o>. (4.14)

For the spectral projectad corresponding to the eigenvalug, P = 1— Q, relation (4.14)
transforms to (note that the operatap — X) 1P should be defined correctly)

exp(X + Y)|0) ~ exp(xo)(1+ QY + (xo — X) 1P (1 — exp(X — x0)Y))|0). (4.15)
This formula is standard for first-order perturbation theory.

5. The exponential approximations of a general case

Let us treat the EA which may be written as the following expansion with a finite number
of cofactors:

expX +Y) = expla,X) expb,Y) ...explaiX) exp(brY) exp(s) (5.1)
whereaq;, b; are the numerical coefficients. Let us denote
J J
(X():,BO:O oz,-:Za,v ,BJZZb, (52)
i=1 i=1
Then the relatiorS; = 0 means
o, = ,Bp =1 (53)
Theorem 1For an EA of the type (5.1) with conditions (5.3)
X oYX/ 1 P . U(XY" 1 P ‘
S, = —_— = biay_ —_— = B ).
: ; ! <k+1 2% 1) E I \k+1 j=1a,ﬁ,

(5.4)
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Proof. It is evident that
exp(s) = exp(—b1Y) exp(—aiX) ...exp(—b,Y) exp(—a, X) exp(X + Y)

and S satisfies Friedrichs’ criterion. The use of an approximation, linear with respéct to

under assumption (5.3), yields

P

(exp(s))y = (exp(—X) exp(X +Y)), — bj exp(—a;_1 X)Y expla;_1X).

j=1

According to lemma 3 and due to the properties (2.9) ofdhenapping (in just the same
manner as that used for (4.6)) we obtain

14
Sy =m(Y exp(X) — Y b; exp(—a;_1X)Y exp(e;_1X)) = 7(¥ F,(X)) (5.5)
j=1

where

P
Fp(X) = exp(X) — Y bj(1+ e;_1X) exple;_1X).
j=1

With the help of (213b), (2.13¢) we find (5.4). The value af, is calculated analogousli/]

Note that, as it in fact must be, the second-order componerfs ahd S, are equal in
magnitude by virtue of (5.3).

As mentioned in the introduction, the EA which has zero coefficients for terms of the
type [Y X¥] represents the most interest for practical purposes. This requirement leads to a
system of equations (see(5.4)) for some

14 1
bk | = —— k=0,1,2,..., M. (5.6)
j; J k+1

Relations of this type are known as the moment problem which has a unique solution
in the positive area (this follows [17] from the positive definity of the matrix with elements
Ajj = (ﬁ)) For instance, fop = 2, M = 2 problem (5.6) has an explicit solution that
leads to the following EAs:

X 3 2 Y
expX +7Y) =~ exp(§> exp(ZY) exp<§X> exp(z) exp(s) (5.7a)

expX +Y) =~ exp(%) exp<§X> exp(:—iY) exp(%) exp(s) (5.7)

where S = —418[[X, Y], Y]. For both EAs (5.7) the difference between the right-hand side
and the left-hand side contains terms of the fourth and higher degree, i.e. (5.7) is accurate
up to the third order. The replacement of the @Qpcofactor in the spirit of (4.2)—(4.4)

gives different expressions férbut does not change the lowest-order correction component

in accordance with the following.

Theorem 2L et us consider two EAs:
exp(X +Y) = exp(A) exp(B) exp(s)
exp(X + Y) = exp(A) exp(S) exp(B)

for some Lie elements, B. The lowest-order non-zero Lie componentsSoénd S have
the same value.
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Proof. In accordance with the definition ¢f we have

exp(S) = exp(—A) exp(X + Y) exp(—B) = exp(B) exp(S) exp(—B).
Due to (2.19) this means that

exp(S) = exp(S) + [B, exp(S)] + 3[[exp(S), B], B] + - --

and now it is sufficient to modify the proof of lemma 3 to demonstrate that the lowest-degree
non-zero Lie components of e§) and exgs) are the same.

Note that ifS = S, + S,41+- - - and By is not equal to zero, theﬁlH = Sy+1+[B1, Si]
and similar estimations may be found for the higher orders. |

With the help of our formulae it is possible to find different EAs of a particular specified
form. Here one should note that for the case under study (see @(®))*) = 0 when
k > 2. Hence, to provide the simultaneous vanishing of the coefficients at thed€pmg")
ando (Y X™) we need to resolve together with (5.6) only the following relation:

p
> a4l =3 (5.8)
=1

As relation (5.3) shows, the problem is insoluble foe= 2, M = 2. Forp = 3 it is easy
to expresss,, b3 as functions ofx; anday, applying (5.6) forM = 2. The substitution of
these results in (5.8) leads to an equationdprand o;:

a23(4ay — 3) — a103(4ay — 3) + (32 — 22 =0 (5.9)

and it is not difficult to demonstrate the absence of any real-valued solutions in positive
numbersa;, b;. We have noticed that among others the continuum of solutions with some
negativea;, b; exists for this equation. We present only one here as an example

7 13 X 2 3 24
expX +7Y) =~ exp Z;X exp ﬁY exp % exp _§Y exp ZX exp 1—7Y
(5.10)

which has the same accuracy as (5.7). A similar EA constructed by Bandrauk and Shen [18]
has seven cofactors and irrational coefficients—the latter include negative ones. However,
the use of evolution operator expansions with variable time direction seems to be strange
enough and inconvenient in practice. In our opinion EA (5.7) is optimal.

In practice one may use large values and, in any case, equations (5.6), (5.8) allow
us to exclude commutators of the sertXY™) or o (Y X™). Delivering from terms such as
o (XY XY) needs much more effort and we doubt whether this effort is reasonable.

6. Concluding remarks

Applying the EAs considered earlier for numerical modelling of a real molecular system
we find they have some rather unpleasant properties. While for relatively short:tithes
evolution operatoi/ (+) does not differ significantly from an approximated ow&:) and

the difference may be estimated as

U@ = WOl < Cut™ (6.1)

whereC,, is some constant and is the lowest non-zero order (@ (1)) "W (r), at relatively
long evolution times this difference may grow significantly. Whereas we usually consider
the Hermitean Hamiltonians, the evolution operaidrs), W (¢) are unitary in our technique,
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thus they differ in norm by no more than 2, but this is too rough for practical calculation.
The way out may be found in employing the formulae which are very popular for targe

in semigroup theory and for numerical approaches to the problems of molecular dynamics
i.e. the EAs based on the Lie—Trotter formulae [19, 20]

expX +Y)= lim (exp(i) exp(z)> (6.2)
n— o0 n n
as well as its symmetrized analogue [19, 21, 22]
expX +Y)= lim {exp X exp r exp X . (6.3)
n—00 2n n 2”

([20] presents a complete analysis of the evolution operator for the case of very small
evolution times.)

Taking into account that/ (t) = (U (¢/n))" and applying (6.1) one may see after ordinary
transformations that [19]

1U @) — (W (/m)" Il = IV /n)" — (W(t/n)"

n—1

= YW a/m)" U /n) — Wt/ m)W(t/m)|
k=0

<nllU@/n) — Wi/n)ll < nCyp(t/n)". (6.4)
As a result
U@ = lim (W(/m)". (6.5)

Let us consider as an illustration relations of the type (5.1) setting all the exponents
a;j = b; = 1/p (this is a case of Trotter expansion (6.2)). Th&n= = (Y F,), where
(see (5.5))

)4
Fp(X) = exp(X) — Z <1+ —1x) exp( > 1x> (6.6)

The sum on the right-hand side of this expression is a Darbou sum for the integral

1
/ (14 zx) exp(zx) dz = exp(x)
0

and the tendency af), to vanish agp — oo illustrates relations (6.2) and (6.3). (For (6.3)
the Darbou sum is replaced with the trapezoidal formula.) The efficiency of the high-order
formulae like (6.2) and (6.3) is demonstrated by a large number of numerical experiments
[5-8,18,21, 22].

As follows from (6.4), the growth of in calculations with a given accuracy level for
|U(t) — (W(t/n))"| leads to the non-linear growth ef For smallm the time-step(¢/n)
decreases considerably whiléncreases, e.g. fargrowth 100 times form = 2 (the case of
Trotter's EA, (6.2)), the time-step should be decreased 100 times for given accuracy. For
the case corresponding to (6.3} = 3), the time-step should be decreased 10 times, and
for our favourite EA corresponding to (5.7) with = 4—only 2.2 times. The calculation
efforts increase only twice here compared with (6.2).

In conclusion we would like to mention again that the constructions described here are
effective for a finite time of evolution. Unfortunately, the technique derived here is not
potent enough for a direct description of asymptoetie- co. An analysis of the formulae
from tables 1 and 2 demonstrates that in relations like (4.15) the terms responsible for the
delta-form tendency are corrected by some non-singular functions wherro. Roughly



speaking, the singular term in (4.15) is ‘omitted’ in EAs of the type (5.1) with a finite-degree
correction as an approximation fér Nevertheless, the method described seems to be at
least attractive for the analysis of tlfematrix in the scattering theory.

Evolution operator approximation
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